2022-02+-22

Interview with Torsten Hoefler,
Axelera AI’s Scientific Advisor

Evangelos Eleftheriou | CTO at AXELERA AI

Interview with Torsten Hoefler Axelera AI’s Scientific Advisor

Out CTO had a chat with Torsten Hoefler to scratch the surface and get to know better our new scientific advisor.

Evangelos: Could you please introduce yourself and your field of expertise?
Torsten: My background is in High-Performance Computing on Supercomputers. I worked on large-scale supercomputers, networks, and the Message Passing Interface specification. More recently, my main research interests are in the areas of learning systems and applications of them, especially in the climate simulation area.

E: Where is currently the focus of your research interests?
T: I try to understand how to improve the efficiency of deep learning systems (both inference and training) ranging from smallest portable devices to largest supercomputers. I especially like the application of such techniques for predicting the weather or future climate scenarios.

E: What do you see as the greatest challenges in data-centric computing in current hardware and software landscape?
T: We need a fundamental shift of thinking – starting from algorithms, where we teach and reason about operational complexity. We need to seriously start thinking about data movement. From this algorithmic base, the data-centric view needs to percolate into programming systems and architectures. On the architecture side, we need to understand the fundamental limitations to create models to guide algorithm engineering. Then, we need to unify this all into a convenient programming system.

E: Could you please explain the general concept of DaCe, as a generic data-centric programming framework?
T: DaCe is our attempt to capture data-centric thinking in a programming system that takes Python (and others) codes and represents them as a data-centric graph representation. Performance engineers can then work conveniently on this representation to improve the mapping to specific devices. This ensures highest performance.

E: DaCe has also extensions for Machine Learning (DaCeML). Where do those help? Could in general in-memory computing accelerators benefit by such a framework and how?

T: DaCeML supports the Open Neural Network Exchange (ONNX) format and PyTorch through the ONNX exporter. It offers inference as well as training support at highest performance using data-centric optimizations. In-memory computing accelerators can be a target for DaCe – depending on their offered semantics, a performance engineer could identify pieces of the dataflow graph to be mapped to such accelerators.

E: In which new application domains do you see data-centric computing playing a major role in the future?
T: I would assume all computations where performance or energy consumption is important – ranging from scientific simulations to machine learning and from small handheld devices to large-scale supercomputers.

E: What is your advice to young researchers in the field of data-centric optimization?
T: Learn about I/O complexity!

As Scientific Advisor, Torsten Hoefler advises the Axelera AI Team on the scientific aspects of its research and development. To learn more about Torsten’s work, please visit his biography page.

Evaluate industry defining AI inference technology today. 1/3

This field is required!
This field is required!
This field is required!
This is not correct
This is not correct.
This is not correct

Your contact details2/3.

This field is required!
This field is required!
This field is required!
  • United States
  • Canada
  • Afghanistan
  • Albania
  • Algeria
  • American Samoa
  • Andorra
  • Angola
  • Anguilla
  • Antarctica
  • Antigua and Barbuda
  • Argentina
  • Armenia
  • Aruba
  • Australia
  • Austria
  • Azerbaijan
  • Bahamas
  • Bahrain
  • Bangladesh
  • Barbados
  • Belarus
  • Belgium
  • Belize
  • Benin
  • Bermuda
  • Bhutan
  • Bolivia
  • Bosnia and Herzegovina
  • Botswana
  • Brazil
  • British Indian Ocean Territory
  • British Virgin Islands
  • Brunei
  • Bulgaria
  • Burkina Faso
  • Burundi
  • Cambodia
  • Cameroon
  • Cape Verde
  • Cayman Islands
  • Central African Republic
  • Chad
  • Chile
  • China
  • Christmas Island
  • Cocos (Keeling) Islands
  • Colombia
  • Comoros
  • Congo
  • Cook Islands
  • Costa Rica
  • Croatia
  • Cuba
  • Curaçao
  • Cyprus
  • Czech Republic
  • Côte d’Ivoire
  • Democratic Republic of the Congo
  • Denmark
  • Djibouti
  • Dominica
  • Dominican Republic
  • Ecuador
  • Egypt
  • El Salvador
  • Equatorial Guinea
  • Eritrea
  • Estonia
  • Ethiopia
  • Falkland Islands
  • Faroe Islands
  • Fiji
  • Finland
  • France
  • French Guiana
  • French Polynesia
  • French Southern Territories
  • Gabon
  • Gambia
  • Georgia
  • Germany
  • Ghana
  • Gibraltar
  • Greece
  • Greenland
  • Grenada
  • Guadeloupe
  • Guam
  • Guatemala
  • Guernsey
  • Guinea
  • Guinea-Bissau
  • Guyana
  • Haiti
  • Honduras
  • Hong Kong S.A.R., China
  • Hungary
  • Iceland
  • India
  • Indonesia
  • Iran
  • Iraq
  • Ireland
  • Isle of Man
  • Israel
  • Italy
  • Jamaica
  • Japan
  • Jersey
  • Jordan
  • Kazakhstan
  • Kenya
  • Kiribati
  • Kuwait
  • Kyrgyzstan
  • Laos
  • Latvia
  • Lebanon
  • Lesotho
  • Liberia
  • Libya
  • Liechtenstein
  • Lithuania
  • Luxembourg
  • Macao S.A.R., China
  • Macedonia
  • Madagascar
  • Malawi
  • Malaysia
  • Maldives
  • Mali
  • Malta
  • Marshall Islands
  • Martinique
  • Mauritania
  • Mauritius
  • Mayotte
  • Mexico
  • Micronesia
  • Moldova
  • Monaco
  • Mongolia
  • Montenegro
  • Montserrat
  • Morocco
  • Mozambique
  • Myanmar
  • Namibia
  • Nauru
  • Nepal
  • Netherlands
  • New Caledonia
  • New Zealand
  • Nicaragua
  • Niger
  • Nigeria
  • Niue
  • Norfolk Island
  • North Korea
  • Northern Mariana Islands
  • Norway
  • Oman
  • Pakistan
  • Palau
  • Palestinian Territory
  • Panama
  • Papua New Guinea
  • Paraguay
  • Peru
  • Philippines
  • Pitcairn
  • Poland
  • Portugal
  • Puerto Rico
  • Qatar
  • Romania
  • Russia
  • Rwanda
  • Réunion
  • Saint Barthélemy
  • Saint Helena
  • Saint Kitts and Nevis
  • Saint Lucia
  • Saint Pierre and Miquelon
  • Saint Vincent and the Grenadines
  • Samoa
  • San Marino
  • Sao Tome and Principe
  • Saudi Arabia
  • Senegal
  • Serbia
  • Seychelles
  • Sierra Leone
  • Singapore
  • Slovakia
  • Slovenia
  • Solomon Islands
  • Somalia
  • South Africa
  • South Korea
  • South Sudan
  • Spain
  • Sri Lanka
  • Sudan
  • Suriname
  • Svalbard and Jan Mayen
  • Swaziland
  • Sweden
  • Switzerland
  • Syria
  • Taiwan
  • Tajikistan
  • Tanzania
  • Thailand
  • Timor-Leste
  • Togo
  • Tokelau
  • Tonga
  • Trinidad and Tobago
  • Tunisia
  • Turkey
  • Turkmenistan
  • Turks and Caicos Islands
  • Tuvalu
  • U.S. Virgin Islands
  • Uganda
  • Ukraine
  • United Arab Emirates
  • United Kingdom
  • United States Minor Outlying Islands
  • Uruguay
  • Uzbekistan
  • Vanuatu
  • Vatican
  • Venezuela
  • Viet Nam
  • Wallis and Futuna
  • Western Sahara
  • Yemen
  • Zambia
  • Zimbabwe
This is not correct.
This field is required!
This field is required!

Your project info3/3.

This field is required!
This field is required!
This is not correct

Thank you for your ordering your Axelera Metis Evaluation Kit!


We've received your order, and a confirmation email has been sent to the provided email address. Our team is excited to review your order.

After evaluating your input, we will be in touch within the next 2 business days to discuss the next steps and how your order can benefit your innovative projects.
Stay tuned for more details coming your way soon!